CHROM. 6220

Dünnschichtchromatographie der Acridon-Alkaloide

In dem Jahr 1948 entdeckten Hughes und Mitarb.¹ die Acridon-Alkaloide. Seitdem sind etwa dreissig Alkaloide dieses Typs bekannt geworden²; sie wurden bisher ausschliesslich in Rutaceen-Arten angetroffen und konnten vornehmlich aus den Blättern und der Rinde dieser Pflanzen isoliert werden. Die z. T. bemerkenswerten biologischen Eigenschaften dieser Verbindungen lassen es wünschenswert erscheinen, Drogen auszuselektieren, welche diese Alkaloide in grösseren Mengen enthalten. DC-Methoden scheinen hierzu besonders geeignet zu sein³,⁴, systematische Untersuchungen fehlen bisher jedoch.

Material und Methoden

Zur Untersuchung des dünnschichtchromatographischen Verhaltens der Acridon-Alkaloide* (Tabelle I) wurden ihre Azeton-Lösungen auf Hand gegossene Kieselgel-G-Platten bzw. Fertigplatten F_{254} + $_{366}$ (Woelm) aufgetragen und in den Fliessmittelsystemen I–III chromatographiert. Nach dem Entwickeln wurden die Substanzflecke bei Tageslicht und im UV-Licht (365 nm) beobachtet, danach mit den in der Tabelle I wiedergegebenen Detektionsmitteln angesprüht. Die Ergebnisse sind in der Tabelle I zusammengefasst.

Reagenzien. Die folgenden Reagenzien wurden verwendet: 2%-ige FeCl₃-Lösung in abs. Äthanol; 1%-ige AlCl₃-Lösung in Methanol, 10 min, 110°; Dragendorff-Reagenz nach Munier und Macheboeuf⁵; 3:1 Gemisch von einer 3%-igen wässrigen Borsäure- und einer 10%-igen wässrigen Oxalsäure-Lösung, 10 min, 110°.

Detektion. Alle Acridon-Alkaloide geben sich auf dem DC bei Tageslicht als gelbgefärbte Flecken zu erkennen. Mit dem sauren Fliessmittel werden die Nor-Derivate rötlich, während die anderen ihre ursprüngliche Farbe behalten.

Auf Kieselgel G zeigen die Nor-Derivate im langwelligen UV-Licht stets eine schwache dunkelbraune oder rotbraune Fluoreszenz, die I-Methoxy-Derivate fluoreszieren dagegen unterschiedlich (s. Tabelle I). Bei dem vorliegenden Untersuchungsmaterial lassen sich noch keine Regelmässigkeiten feststellen (s. hierzu Lit. 6).

Mit Dragendorff-Reagenz geben alle Proben eine orangebraune Färbung.

Mit Eisenchlorid-Lösung färben sich die Nor-Derivate grün, die übrigen zeigen keine Reaktion. Dieser Test wurde bereits früher von Hughes und Mitarb. zur Differenzierung der I-Hydroxy-Derivate von den 2-, 3- und 4-Hydroxy-Derivaten herangezogen. Die Angaben in der Tabelle I machen deutlich, dass sich diese Färbemethode auch zum dünnschichtchromatographischen Nachweis dieser Verbindungs-

^{*} Die Acridon-Alkaloide verdanken wir den folgenden Kollegen: Acronycin, Melicopin und Melicopidin—Dr. F. N. Lahey, Brisbane, Australia; Acronycin und Melicopicin—Dr. G. H. Svoboda, Ind., U.S.A.; Melicopicin, 1,3-Dimethoxy-N-methylacridon und Xanthevodin—Dr. J. A. Lamberton, Melbourne, Australia; Evoprenin, Xanthoxolin und 1,2,3-Trimethoxy-N-methylacridon—Prof. Dr. E. Ritchie, Sydney, Australia; Evoxanthin—Dr. R. H. Prager, Adelaide, Australia; Atalaphyllin und N-Methylatalaphyllin—Dr. N. Viswanathan, Bombay, India; Tecleanthin—Dr. K. H. Pegel, Durban, South Africa; Evoxanthidin—Prof. Dr. F. Dallacker, Aachen, B.R.D.

NOTES

DC-CHARAKTERISTIKA EINIGER ACRIDON-ALKALOIDE®

Fliessmittelsysteme: (l) Benzol-Äthylazetat (6:4); (II) Toluol-Äthylazetat-Ameisensäure (5:4:1); (III) Benzol-Äthylazetat (8:2), konz. NH_a -Atmosphäre.

$\overline{N_{\ell}}$.	Name	Struktur						hR _F -Werte (Kieselgel G)		
		C-I	C-2	C-3	C-4	C-5	R	I	_	III
1 2 3	N-Methylacridon 1-Hydroxy-N-methylacridon 1,3-Dimethoxy-N-methyl-	H OH OCH ₈	1-1 1-1 1-1	OCH ³	H H H	H H H	CH ₃ CH ₃ CH ₃	58 62 12	70 73 11	49 62 9
4 5 6	acridon Xanthoxolin Arborinin 1,2,3-Trimethoxy-N- methylacridon	OH OH OCH ₃	OCH ₃ OCH ₃	OCH ₃ OCH ₃	H H H	Н Н Н	H Cl·l ₃ CH ₃	28 39 21	55 61 9	4 27 17
7 8 9 10	Evoxanthidin Evoxanthin Tecleanthin Melicopicin	OCH ₃ OCH ₃ OCH ₃	∕o-c	H ₂ -O H ₂ -O H ₂ -O OCH ₃	H H H OCH ₃	H OCH ₃ H	H CH ₃ CH ₃ CH ₃	16 23 28 43	8 7 16 60	6 19 22 37
I I I 2	Xanthevodin Melicopidin	OCH_3		H ₂ -O H ₂ -O	OCH ₃	I-I I-I	H CH ₃	21 36	13 27	13 28
13	Melicopin	OCH3	OCF	1 ³ /O	-CH ₂ -O	H	CHa	43	50	34
14	Des-N-methylnoracronycin	ОН	H	2		Н	Н	64	74	37
15	Noracronycin	ОН	I-I	9		Н	CH ₃	75	82	66
16	Acronycin	OCH _a	i -l	9		I-I	CH ₃	29	51	21
17	Rutacridon	ОН	H	H ₂ C O		1-1	CH ₃	68	81	62
18	Gravacriclondiol	ОН	H	HOCH ₂ O	/ l ₃	I-I	CH ₃	5	49	o
19	Gravacridondiol- monomethyläther	ОН	H	HO CH	<i>-</i>	Н	СНа	22	54	15
20	Gravacridonchlorin	ОН	H	HOCH ₂ Q		Н	CI-la	45	66	21
21	Gravacridonolchlorin	ОН	Н	HOCH ₂		Н	CH ₃	14	52	3
22	Evoprenin	НО	OCH;	0/	Н	н	СНа	65	74	48
23	Atalaphyllin	OH/	$\sim \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	OH /		ОН	Н	67	74	o
24	N-Methylatalaphyllin	OH/		OH /	△ ✓	HO	CH _a	73	80	20

UV-Licht (Ki	eselgel G)		$FeCl_3$	Borsäure Oxals	hR _F -Werte (Fertigplatten)		
Ī	II	III		I	II	I	II.
blau rotbraun blau	blau rotbraun grüngelb	blauviolett rotbraun blau	grün	blaugrün gelb grün	blaugrün gelb grün	37 44 3	56 54 2
dunkelbraun dunkelbraun blaugrün	dunkelbraun dunkelbraun braungelb	dunkel dunkel blaugrün	grün grün —	gelb gelb gelbgrün	dunkelgelb gelb gelbgrün	0 19 10	24 33 2
blassblau blassgrün blassgrün orangegelb	orangegelb orangegelb goldgelb rot	blau blaugrün blaugrün gelb		grün grün gelbgrün gelbbraun	grün grün gelbgrün gelləbraun	5 9 12 24	2 2 2 32
gelbgrau orangegelb	rot rot	gelb gelb		dunkelbraun rotbraun	gelbbraun gelbbraun	8 18	24 5
orangegelb	rot	gelb	_	rot	rot	2 I	1.4
dunkelbraun	dunkelbraun	dunkel	grün	grün	blaugrün	49	G2
dunkelbraun	dunkelbraun	dunkel	grün	rotbraun	rotbraun	бо	69
gelbgrün	rot	gelb	_	rotbraun	gelbbraun	11	14
rot	rot	rot	grün	gelb	gelb	57	68
rot	rot	rot	grün	gelb	gelb	I	12
rot	rot	rot	grün	gelb	gelb	10	31
rot	rot	rot	grün	gelb	gelb	27	44
rot	rot	rot	grün	gelb	gelb	6	28
dunkelbraun	dunkolbraun	dunkel	grün	gelb	dunkelgelb	46	54
grün	dunkelbraun	grün	grün	gelb	dunkelgelb	56	68
dunkelbraun	dunkelbraun	dunkel	grün	goldgelb	goldgelb	бо	73

typen eignet. Die Reaktion beruht auf einer Komplexbildung, wie sie beispielsweise auch bei den Flavonoiden anzutreffen ist.

Mit AlCl₃-Reagenz geben alle Acridon-Derivate nach Wärmebehandlung (110°, 10 min) unterschiedliche Fluoreszenzfarben. Die Reaktion beruht ebenfalls auf einer Komplexbildung. Es lässt sich noch keine Abhängigkeit der Farbtöne von bestimmten Strukturmerkmalen erkennen.

Auch mit dem Oxalsäure-Borsäure-Reagenz geben die Acridone charakteristische Fluoreszenzfarben (UV-Licht 365 nm), die auf das Entstehen eines Boroxalsäure-Komplexes (analog den Flavonoiden⁸) zurückzuführen ist.

Ergebnisse und Diskussion

Mit den angeführten Fliessmittelsystemen I-III, welche sich vorteilhaft auch zur Chromatographie anderer Rutaceen-Inhaltsstoffe (Cumarine, Chinolin-Alkaloide etc.) verwenden lassen⁹, sind alle untersuchten Acridon-Alkaloide trennbar.

Hinsichtlich der hR_F -Wert-Strukturbeziehungen liessen sich folgende Regelmässigkeiten beobachten:

(1) Die 1-Hydroxy-Derivate (Nor-Verbindungen) weisen im allgemeinen einen höheren hR_F -Wert auf als die 1-Methoxy-Derivate, wie z.B. an den Paaren Arborinin und 1,2,3-Trimethoxy-N-methylacridon sowie Acronycin und Noracronycin zu erkennen ist. Dieser Effekt wird durch die starke Chelatisierung der 1-Hydroxy-Gruppe verursacht.

(2) Durch ihre stärkere Basizität haben die N-Methyl-Derivate (im neutralen und sauren Fliessmittelsystem) stets einen höheren hR_F -Wert als die entsprechenden NH-Derivate. (Beispiele: Xanthoxolin-Arborinin, Atalaphyllin-N-Methylatalaphyllin, Des-N-methylnoracronycin-Noracronycin, Evoxanthidin-Evoxanthin, Xanthevodin-Melicopidin).

Pharmakognostisches Institut der Medizinischen Universität Szeged (Ungarn) Zs. Rózsa K. Szendrei I. Novák

J. Reisch

Institut für Pharmazeutische Chemie der Westfälischen Wilhelms-Universität Münster (B.R.D.)

- I G. K. HUGHES, F. N. LAHEY, J. R. PRICE UND L. J. WEBB, Nature, 162 (1948) 223.
- 2 J. REISCH, K. SZENDREI, I. NOVÁK UND E. MINKER, Sci. Pharm., im Druck.
- 3 H. H. S. FONG, N. R. FARNSWORTH UND G. H. SVOBODA, Lloydia, 32 (1969) 110.
- 4 I. PANEA, Stud. Cercet. Chim., 19 (1971) 173.
- 5 R. MUNIER UND M. MACHEBOEUF, Bull. Soc. Chim. Biol., 33 (1951) 846, 857, 861.
- 6 J. REISCH, K. SZENDREI, E. MINKER UND I. NOVÁK, Pharmazie, 27 (1972) 208.

NOTES 425

7 G. K. Hughes, N. K. Matheson, A. T. Norman und E. Ritchie, Aust. J. Sci. Res., A5 (1952)

8 L. HÖRHAMMER UND R. HÄNSEL, Arch. Pharm., 288 (1955) 315.
9 Ι. Νονάκ, G. Buzas, E. Minker, M. Koltai und K. Szendrei, Planta Med., 13 (1965) 226; 14 (1966) 57, 151; 15 (1967) 132.

Eingegangen am 15. Mai 1972

J. Chromatogr., 72 (1972) 421-425